ПРОГРАММА КОДИРОВКИ И ИЗМЕРЕНИЯ ЦВЕТА В МОДЕЛЯХ RGB, HSV, HSL и CMYK

Программа

Пояснительная записка

Листов 10

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1.НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	3
1.1 Назначение программы	3
1.2 Область применения программы	3
2.ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
2.1 Постановка задачи на разработку программы	4
2.2 Выбор программных средств решения задачи	4
2.2.1 При выборе программных средств реализации поставленной зада были рассмотрены такие языки программирования и среды разработки как:	
2.3 Алгоритм задачи	5
2.3.1 Для поставленной задачи был составлен алгоритм инкрементной разработки:	5
2.4 Структура программного проекта	7
2.4.1 Диаграмма пакетов приложения, отображающая состав проекта и взаимосвязи его составляющих, представлена на Рисунке 1:	ı 7
2.4.2 В структуру программного проекта входят следующие модули:	7
2.4.3 Структура проекта представлена на Рисунке 2:	8
2.5 Описание функционирования программы	8
2.5.1 На Рисунке 3 представлена диаграмма вариантов использования программы, на которой отражены все возможные сценарии взаимодействия пользователя с программой:	8
• •	
2.5.2 На Рисунке 4 представлена диаграмма деятельности, отражающая алгоритм работы программы:	я 9
2.5.3 На Рисунке 5 представлена диаграмма последовательностей, на которой показаны процессы, составляющие работу программы и их св.	язь
с ее составляющими:	9
2.6 Входные и выходные данные	9
2.6.1 На Рисунке 6 представлена функциональная диаграмма, на которо	
показаны входные и выходные данные программы:	10
3.ИСТОЧНИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ РАЗРАБОТКЕ	10

ВВЕДЕНИЕ

Наименование программы: Программа кодировки и измерения цвета в моделях RGB, HSV, HSL и CMYK.

Разработка данной программы велась на основе учебного плана кафедры Математики и Информатики специальности 09.02.03 «Программирование в компьютерных системах» по требованиям составленного для проекта технического задания от 17.05.2021.

1.НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Назначение программы

Данная программа предназначена для вычисления шестнадцатеричного кода выбранного пользователем цвета и его измерения в цветовых пространствах RGB, HSV, HSL и CMYK.

1.2 Область применения программы

Программа рассчитана на практическое использование при работе с цветами и оттенками в процессе проектирования и создания приложений с графическим интерфейсом пользователя и веб-разработки.

2.ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Постановка задачи на разработку программы

При составлении технического задания была поставлена следующая задача: создание программы, осуществляющей кодировку цветов в шестнадцатеричном формате, а также их измерение и вывод цветовых координат в моделях RGB, CMYK, HSV и HSL.

2.2 Выбор программных средств решения задачи

- 2.2.1 При выборе программных средств реализации поставленной задачи были рассмотрены такие языки программирования и среды разработки, как:
- Компилируемый статически типизированный язык программирования общего назначения С;
- Компилируемый статически типизированный язык программирования общего назначения С++, поддерживающий объектно-ориентированную разработку;
- Строго типизированный объектно-ориентированный язык программирования общего назначения Java;
 - Мультипарадигменный язык программирования JavaScript;
 - Стандартизированный язык разметки документов HTML;
- Формальный язык описания внешнего вида документа (вебстраницы) CSS;
- Интегрированная среда разработки Visual Studio, используемая для создания компьютерных программ, веб-сайтов, веб-приложений, веб-сервисов и мобильных приложений на Visual C++, Visual C#, JavaScript;
- Кроссплатформенная свободная IDE для разработки на C, C++ и QML Qt Creator;
 - Текстовый редактор Notepad++;
 - Среда веб-разработки jsFiddle.

выбраны Для реализации поставленной задачи были такие программные средства, как мультипарадигменный язык программирования JavaScript, стандартизированный язык разметки документов HTML, формальный язык описания внешнего вида документа CSS и среда разработки jsFiddle.

Выбранный язык программирования используется для разработки вебстраниц и веб-приложений, которые в сравнении с локальными приложениями имеют такие преимущества, как простота доступа и простота развертывания.

Стандартизованный язык разметки документов и формальный язык описания внешнего вида веб-страницы используются как дополнение к языку программирования JavaScript и упрощают разметку и проектирование внешнего вида страницы.

Среда веб-разработки jsFiddle позволяет использовать выбранные программные средства при создании веб-приложений.

2.3 Алгоритм задачи

- 2.3.1 Для поставленной задачи был составлен алгоритм инкрементной разработки:
- 1 инкремент: начальная разметка веб-страницы и подключение к ней программного модуля JavaScript и стилевого файла;
- 2 инкремент: добавление на HTML-страницу блоков для элементов графического интерфейса пользователя; добавление полей для вывода вычислений кода цвета и его координат в моделях RGB, HSV, HSL и CMYK с начальными значениями измерений;
- 3 инкремент: добавление описания стилей блоков, добавленных на веб-страницу в стилевом файле;
- 4 инкремент: создание в программном модуле функции измерения координат выбранного пользователем цвета в модели RGB;
- 5 инкремент: создание в программном модуле функции измерения координат выбранного пользователем цвета в модели HSV;
- 6 инкремент: добавление описания блоков веб-страницы: блока слайдера цветов, диапазона яркости выбранного цвета и окна для его отображения;

- 7 инкремент: создание в программном модуле функции для измерения координат выбранного цвета в модели HSL;
- 8 инкремент: создание в программном модуле функции для измерения координат выбранного цвета в пространстве СМҮК;
- 9 инкремент: создание в программном модуле функции для реализации вычисления шестнадцатеричного кода цвета;
- 10 инкремент: добавление в структуру программного проекта файла библиотеки JavaScript jQuery;
- 11 инкремент: создание программного модуля для использования добавленной в структуру проекта библиотеки; реализация связывания алгоритмов вычисления кода цвета и измерения его координат с помощью программных средств добавленной в проект библиотеки;
- 12 инкремент: реализация функций обработки действий пользователя с помощью программных средств библиотеки jQuery; реализация обновления положения движка, передвигаемого на цветовом слайдере пользователем с помощью мыши; реализация обновления цвета, для которого выполняются вычисление кода и измерение.

2.4 Структура программного проекта

2.4.1 Диаграмма пакетов приложения, отображающая состав проекта и взаимосвязи его составляющих, представлена на Рисунке 1:

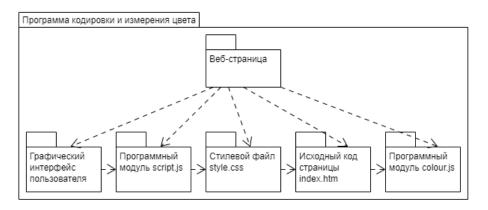


Рисунок 1 – Диаграмма пакетов программного проекта

- 2.4.2 В структуру программного проекта входят следующие модули:
- Программные модули:colour.js и script.js;
- Файл исходного кода страницы:index.htm;
- Стилевой файл:style.css;
- Файл библиотеки jQuery v.3.6.0:jquery.js.

2.4.3 Структура проекта представлена на Рисунке 2:

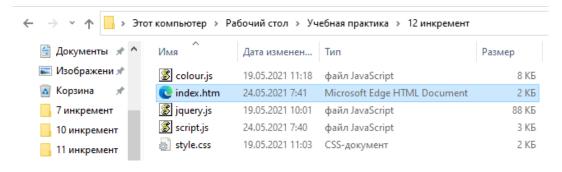


Рисунок 2 – Структура проекта

2.5 Описание функционирования программы

2.5.1 На Рисунке 3 представлена диаграмма вариантов использования программы, на которой отражены все возможные сценарии взаимодействия пользователя с программой:

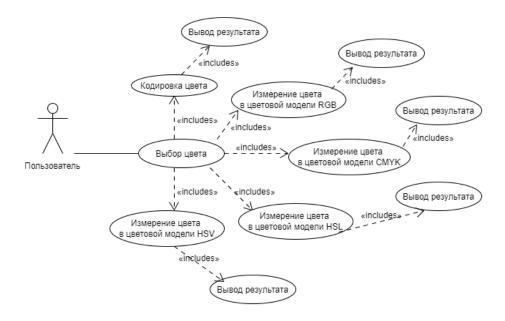


Рисунок 3 – Диаграмма вариантов взаимодействия

2.5.2 На Рисунке 4 представлена диаграмма деятельности, отражающая алгоритм работы программы:

Рисунок 4 – Диаграмма деятельности

2.5.3 На Рисунке 5 представлена диаграмма последовательностей, на которой показаны процессы, составляющие работу программы и их связь с ее составляющими:

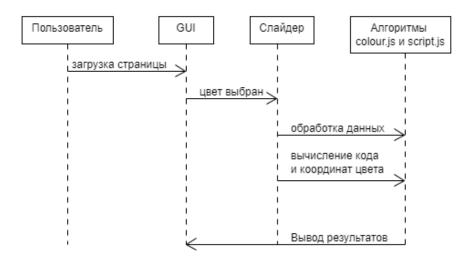


Рисунок 5 – Диаграмма последовательностей

2.6 Входные и выходные данные

2.6.1 На Рисунке 6 представлена функциональная диаграмма, на которой показаны входные и выходные данные программы:

Рисунок 6 – Функциональная диаграмма

3.ИСТОЧНИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ РАЗРАБОТКЕ

- http://bestsoft.ru/files/3/3116/screen/big/
 Microsearch_Color_Picker.jpg
- 2. http://cdn.bolshoyvopros.ru/files/users/images/b6/b9/b6b9d00b3b365 64b47a8abd75511e179.png
- 3. https://rugraphics.ru/sites/default/files/Programms/Editimage/html_colors_2000.jpg
- 4. Кодирование цвета. Цветовые модели и цветовые режимы. URL: https://life-prog.ru/2_109985_kodirovanie-tsveta-tsvetovie-modeli-i-tsvetovie-rezhimi.html (дата обращения: 17.05.2021). Режим доступа: свободный.
- 5. Программы для определения цвета. URL: https://rugraphics.ru/fori mage/programmy-dlya-opredeleniya-tsveta (дата обращения: 17.05.2021). Режим доступа: свободный.
- 6. Фишерман, Л.В. Git. Практическое руководство. Управление и контроль версий в разработке программного обеспечения СПб.: Наука и Техника, 2021. 304 с., ил. с.44-45. ISBN 978-5-94387-547-2

7. Цветовая модель. URL: https://ru.wikipedia.org/wiki/Цветовая_мод ель#:~:text=Цветовая%20модель%20%20математическая%20модель,задаваем ые%20моделью%2С%20определяют%20цветовое%20пространство (дата обращения: 17.05.2021). — Режим доступа: свободный.